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Hand Calculation Methods for Criticality Safety —
A Primer

by

Douglas G. Bowen and Robert D. Busch

Abstract

The purpose of this primer is to provide an overview of the most common hand calculation methods
used for criticality safety calculations. The most widely used tools available to a criticality safety
practitioner are probably the common Monte Carlo or deterministic criticality safety codes, which
can be used to model very complex systems. However, use of these codes can obscure the parameters
that a particular fissile system may be sensitive to, whereas the hand calculation methods can be
used to delve into the ways each parameter may affect the reactivity of a fissile material system.
Further, practitioners must avoid using computer codes as devices that take inputs and simply
provide outputs (i.e., a “black box”). Many years ago, pioneers such as Joe Thomas, David Smith, and
Hugh Paxton, among others in the field of nuclear criticality safety, took the time before the advent
of high-speed desktop computers to create simple hand methods for criticality safety analyses. Some
of the methods can be used for single fissile units; others are applicable to fissile units arranged into
simple array configurations. This primer discusses the applicability of the various methods,
illustrates how they are used, and provides an interpretation of the various results. Some time
investment will be needed to master the methods that could be most useful; however, they can
provide the practitioner with very fast and accurate answers to criticality safety problems if they are
used correctly and if critical data exist for the problem at hand. Hand calculation methods can be
used as a starting point for more advanced calculations, and in many circumstances, they can
provide sensitivity and perturbation information quicker than wusing a criticality code.



1. Overview of Hand Calculation Methods

1.1 Introduction

The nuclear criticality safety practitioner has many tools available to analyze normal case and
credible process upsets for criticality safety evaluation development. The most common tools are
probably the Monte Carlo or the deterministic criticality safety codes, which can be used to model
very complex systems. However, use of these codes can obscure the parameters that a particular
fissile system may be sensitive to, and criticality safety practitioners must avoid using computer
codes as devices that take inputs and simply provide outputs. Many years ago, pioneers such as Joe
Thomas, David Smith, and Hugh Paxton, among others in the field of nuclear criticality safety, took
the time before the advent of high-speed desktop computers to create simple hand calculation
methods for criticality safety analyses. Some of the methods can be used for single fissile units
whereas others can be used for fissile units arranged into simple array configurations. The following
methods are discussed at some length in this primer.

Single Unit Methods

e  One-group diffusion theory

e  One-group modified diffusion theory
e Buckling conversions

o Core-density conversions

Array Unit Methods

e Surface density method

e Density analog method

e Limiting surface density (NBx2) method
e Solid angle method

The goal of this primer is to provide some background for each method, to describe how each
method is applicable and useful, and to provide example problems so that the criticality safety
practitioner can apply the methods quickly and accurately. These hand calculation methods can
provide a first look at a simple system to determine whether more complex calculations are
warranted. Further, the hand methods can be used for parametric studies that identify which
criticality safety parameters a fissile system may be sensitive to.

1.2 Purpose of Hand Calculation Methods

Hand calculation methods can take some time to learn and apply, but the time investment is
valuable, particularly in gaining insight to the physics of fissile systems. The methods covered in this
primer can be easily adapted to scripts, programming languages, and spreadsheets. Once the user
has learned the methods, they can easily be used to perform comprehensive parametric calculations
on individual parameters (mass, density, volume, concentration, etc.) and perturbation analyses.
Further, they can provide a first look at simple single unit and array systems. For example, if
diffusion theory is used to examine a worst-case process upset condition and if the infinite
multiplication factor, k., for a particular system is much less than unity, there is no further need to
perform calculations because a criticality event is not possible under the upset conditions. If the
resulting k., is close to unity or exceeds unity, then further calculations are necessary.



Hand calculation methods are useful to provide the analyst with a better understanding of the
basic physics of the problem. Computer calculations are convenient and very fast; however, it is
sometimes difficult to relate the basic output provided by the codes to the basic physics involved.
Thus, hand calculations can be valuable for new practitioners in developing intuition with respect to
neutron transport physics, whereas advanced users can employ hand calculations as a starting point
for more advanced calculations.

1.3 Choosing the Appropriate Method

The biggest challenge in applying these hand calculation methods to physical problems is
choosing the appropriate or best method. The discussion that accompanies each hand method
includes the applicability for the particular method and its limitations. For example, if a solid chunk
of plutonium or uranium metal is being machined in a particular fissile material operation, the
result of the machining could be the generation of small chips or turnings. Assuming that no
moderating material is introduced to the machined plutonium or uranium metal, the density of the
fissile material has been significantly reduced. Therefore, the best method to use would be the core-
density method. This primer provides the following information for each method:

1. Overview of the method
2. Applicability of the method to solve certain problems
3. Example problems solved step-by-step

1.4 Single Unit Hand Calculations

The methods listed in Table 1 are valid for single fissile units only. The methods discussed for
single units are the one-group and modified one-group diffusion theories, buckling conversions, and
core-density conversions. These methods can be used to resolve a wide variety of criticality safety
problems as summarized Table 1.

Table 1. Single Unit Methods and Applicability Summary

Single Unit Hand
Calculation Method Applicability Summary

e Good for large, homogeneous systems with isotopes that have low neutron
absorption.

e Caution: Diffusion theory is not a good method to use for small systems, near
boundaries, or in or near strong neutron absorbing materials.

One-group and
Modified One-Group
Diffusion Theories

o Useful for simple geometries such as spherical, slab, or cylindrical systems.

e Can convert the neutron leakage characteristics for a critical simple geometry to
another simple geometry that has equivalent leakage characteristics, as long as
critical data exist for a particular system.

Buckling Conversions

e (Can be applied to homogeneous, critical systems if the volume or density of the
Core-Density system changes uniformly.

Conversions e Applicable to bare systems or those with a close-fitting reflector, as long as the
reflector density remains constant.




1.5 Array Hand Calculations

The methods listed in Table 2 are valid for fissile units arranged in certain array configurations. The
methods discussed in this section are the surface density method, density analog method, the solid
angle method, and the limiting surface density method or the NBx2 method. These methods can be
used to resolve a wide variety of criticality safety problems in which fissile materials are arranged
into various multiple-unit configurations.

Table 2. Array Methods and Applicability Summary

Array Hand
Calculation Applicability Summary
Method

o Useful for determining the subcritical center-to-center spacing for fissile materials stored
or staged in finite array configurations where the size of the array is controlled in one
direction

o Useful for irregular shapes such as equipment stored on the floor

e Considers 15.5 cm of water reflection on the top and bottom of the array

Surface Density
Method

o Useful for determining the subcritical center-to-center spacing for fissile materials stored
Density Analog or staged in array configurations of any shape

Method o Useful for irregular shapes such as equipment stored on the floor
e Considers 20.0 cm of water reflection on the top and bottom of the array

o Useful for determining the critical center-to-center spacing for fissile materials stored or
staged in array configurations of any shape (>64 units)

Useful for irregular shapes such as equipment stored on the floor

Data exists for powders, metals, up to an H/X of about 20 for some fissile materials
Data exists for arrays reflected by concrete instead of water

Can be used to calculate trends due to a change in unit shape or density

Considers 20.0 cm of water reflection on the top and bottom of the array

Limiting
Surface Density
(NBnN2) Method

Useful for small numbers of moderated fissile units, because the basis for this method is

experiments with aqueous solutions of fissile materials.

e The multiplication factor for any individual unit cannot exceed 0.8, and the unit must be
subcritical with a thick close-fitting water reflector.

Solid Angle ¢ The minimum separation distance between fissile units should be at least 0.3 meters, and

Method the total allowed solid angle should not exceed 6 steradians.

o Reflectors that are more effective than a thick water reflector should not be considered for
this method.

o Concrete reflection on three sides of the fissile material is considered bounded by this

method.

1.6 Confidence in Hand Calculations

The analyst may be interested in how useful and practical hand calculations are when there are
many comprehensive Monte Carlo and Deterministic codes available for criticality safety
applications. In the example problems presented here, many have been verified using the following
code packages and data:

e MCNP5
¢ SCALE5, Keno V.a
e DANTSYS

e Physical Dimensions

Chapter 9 presents the results of this verification effort. The purpose for this effort is to demonstrate
the usefulness and accuracy of the various hand calculation methods and assist the criticality safety
practitioner choose the appropriate method for a particular problem.




2. One-Group and Modified One-Group Diffusion
Theories

2.1 What You Will Be Able to Do

e Determine how to apply one-group diffusion theory to a simple fissile material system

e Use one-group diffusion and modified one-group diffusion theory and compare differences
between the two methods

e Calculate the infinite multiplication factor, k.., and critical dimensions for simple fissile
systems

e Interpret the results provided by one-group diffusion theory

2.2 Qverview of Diffusion Theory
2.2.1 One-Group Diffusion Theory

Rigorous derivations of the one-speed diffusion equation can be found in many textbooks
(References 1 and 2). The focus of this discussion is on using the diffusion approximation to solve
several example problems. The neutron flux in a critical system can be represented by the time
dependent, one-speed diffusion approximation (Reference 2).

2 1d¢
—(-DV*¢)-% p+vx ==
(DV'9)-T9+VE,9=——

In this equation, ¢is the one-group or single energy neutron flux (neutrons/cm2—sec), D is the one-
group diffusion coefficient (cm), 2, is the macroscopic absorption cross-section (cm-1), 3 is
macroscopic fission cross-section (cm-1), vis the number of neutrons emitted per fission (unitless), ¢ is
time (sec), v is the neutron speed (cm/sec) and V2¢is the Laplacian operating on the neutron flux.

For a fissile system to maintain a fission chain reaction, the volume-to-mass ratio of fissile
material must exceed a critical value that depends on system conditions. The determination of
critical size is based on a consideration of the conservation or balance of neutrons in the fissile
system. For a fissile system, neutrons are either produced (from an external source or fission
reactions in the fissile material) or lost (either leakage from the system or absorption by the
materials present in the system). Thus, a neutron balance equation can be developed on the basis of
these production and loss effects as follows.

Net rate of gain Rate of production of Rate of loss of neutrons
of neutrons per = neutrons by fission - per unit volume by
unit volume per unit volume leakage and absorption

Therefore, for the one-group, time-dependent diffusion equation, the neutron balance can also be
written in the following form where n represents the neutron density (neutrons/cms3).



140 __(_Dvig)-3,9+ vz ¢

v dt
1 @ = d_n = —Leakage—Absorption + Production
vdt dt

The components of the one-speed, time dependent diffusion approximation, as illustrated in the
neutron balance equation shown above, are explained below.

-DV2¢  Represents the neutron leakage from the system. The negative sign in front of this term in

the diffusion equation indicates that there is a net loss of neutrons from the system
(neutrons/cms3—sec).

a0 Represents the loss of neutrons from the system due to absorption in the system. The
negative sign in front of this term in the diffusion equation indicates that there is a net loss
of neutrons from the system (neutrons/cm3—sec).

(DY) Represents neutron production in the system due to fissions within the fissile material.
This term is positive in the diffusion equation, which indicates that there is a net gain of
neutrons in the system (neutrons/cm3—sec).

1 d¢ Represents the rate of change of the neutron density in the system, which is equal to the

v dt sum of the terms listed above or the neutron balance for the system.

For a steady-state fissile system in which the neutron population is constant, such as in a just-
critical system, the rate of change of the neutron population is zero or dn/dt = 0. Thus, the one-speed
diffusion equation can be written as

~(-DV*$)-% ¢+ VZ 6 =0,

’

. . . 1d
or if written as the neutron balance and setting _d_lz =0
v

—Leakage — Absorption + Production = 0.

If the diffusion equation is rearranged slightly, then

VL ¢ =(-DV*)+X ¢

Dividing both sides of this equation by D and combining terms results in the following expression

vZf—Z

Vi + 1 ¢9=0.
¢ D ¢



Note that this is in the form V?¢ + B> ¢ = 0, where B® is equal to a constant,

) vEf—):
B? =constant =| ——~|.
D

The term, B2, in this form is a function of only the material properties of the system. Note that no
geometric dependencies are present. Thus, changes in the material properties of the system will
affect, B2, whereas a change in the geometry of the system will not. For this reason, B2, as defined
above, is known as the material buckling. It describes the curvature of the flux and is based only on
material properties.

For a one-dimensional slab (1-D), for example, the steady state diffusion equation can then be
solved.

Recall from before that V*¢ + B°9 = 0 where B” is equal to a constant:

) VZ . z
B? =constant =| ——~2
D

2

Knowing that V¢ = [j f}, the diffusion equation for a one-dimensional slab
x

with thickness, x, can be rewritten as

d*¢

—+B*%=0

dx® 4

and has a solution, ¢ (x)= A cos Bx + C sin Bx.

A complete solution for the 1-D slab can be found by considering the possible boundary conditions
for the system:

1. The flux is finite and real,
2. The current and flux are continuous at the system boundaries,

3.@ =0

x=centerline

4. (%) =0.

x=outside edge

(symmetry condition), and

We need two boundary conditions for the 1-D slab, 3 and 4, to obtain a complete solution to this problem.

Figure 1 will assist with completing the solution to the 1-D slab example.
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Figure 1. Neutron Flux Profile for the 1-D Slab, One-Group Diffusion Theory
Approximation

Appendix A provides an in-depth discussion of the linear extrapolation distance. On the basis of
this discussion of extrapolation distance and vacuum boundary conditions, the following relationship
can be defined; it states where the mathematical representation of the neutron flux is zero.

X' =X+d,
where

X
d

one-half of the slab thickness and

2D or 0.71 A, as defined and discussed in Appendix A.

Thus, the neutron flux vanishes at the extrapolated boundary, which lies approximately 0.7 1A
beyond the physical boundary. To take advantage of symmetry, consider the center of the slab to be
at x = 0. Thus, the boundary conditions can then be used to find the diffusion theory solution.

The boundary condition is expressed as a =0 (symmetry condition). Thus,

x=centerline

¢(x) = Acos Bx + Csin Bx; then % =—ABsin Bx + CBcos Bx at x = 0:
X

—ABsin0+ CBcos(0)=0

0+CB(1)=0.

Thus, C =0. The flux equation can then be written as follows, based on the result of applying the first
boundary condition, #3.

¢(x) = Acos Bx.



Now, the boundary condition, #4, can be applied to this system to complete the solution for the 1-
D slab. This boundary condition is used to determine the value for B.

The boundary condition is expressed as ¢(X") =0, so that A cos BX’ =0.
Now cos BX’ =0 whenever BX’ = %

nr

;e

B is the last variable left in this equation, so solve for B: B =

Usually, the fundamental mode (n =1) is the case of most interest. Thus, B can be rewritten as
B= &, where, from Figure 1, X' = X +d,

B_ T _ T
2X+2d d+2X+d’

X
Thus, ¢(x)= Acos .
o= 2

The remaining variable to determine is the value for A. A is the amplitude of the flux and depends
on the power of the fissile system. Until the power of the system is specified or known, A remains
undetermined. Note that B determines the flux shape or frequency for the system.

At this point, it appears that we have problem because two different values for B2 have been
defined.

v, -3 2
B2 =| ——"%|andB?=| =~
m D g | 2x”

These values for B? are not incorrect. The first definition is known as the material bucking, Bn?2,
and is dependent on the materials in the system. The second definition is known as the geometrical
buckling, Bg?, and is only dependent upon the geometrical properties of the system.

If the geometric buckling, B2, is the solution to the steady state diffusion equation, the definition
can only apply when the multiplication factor for the system is 1 (critical). The material buckling,
B2, is independent of the multiplication factor; however, if the material buckling is just equal to the
geometric buckling, then the system must be critical. This is because the geometric buckling, as
defined above, is only applicable to a critical system. Thus, when B2 = Bg?, the multiplication factor
is equal to 1, which is a critical system. It is noteworthy that the relationship between the geometric
and material bucklings can be used to identify subcritical and supercritical systems as follows.

As previously stated,

B? = B? then k=1 (Critical),

m g

B’ > B; then £>1 (Supercritical),

B < B; then k<1 (Subcritical).

m



In other words, within a fixed fissile material geometry, the geometric buckling is constrained. If
more fissile material is present than will fill the geometry, the material buckling exceeds the
geometric buckling and the system is supercritical. If there is less fissile material than needed to fill
the geometry, the system is subcritical.

It is interesting at this point to see how the effective multiplication factor changes with changes
in neutron flux. Recall the solution to the steady-state diffusion equation. When the rate of change
in the neutron flux is positive (8¢/dt > 0), then the multiplication factor exceeds 1, which is indicative
of a supercritical system. If the rate of change of the neutron flux is negative (6¢/0t < 0), then the
multiplication factor is less than 1, which is indicative of a subcritical system. If the rate of change of
the neutron flux is zero (8¢/6t = 0), then the system is at a critical condition, which indicates the
neutron population is constant and unchanging as a function of time.

If a change to the multiplication factor of a system is desired, then either the material or
geometric properties of the system can be changed. Thus, the physical impacts of the material and
geometric bucklings can be reviewed.

e Material Buckling (Bm?) — the material buckling is primarily a function of the absorption
and fission cross-sections of a region. Once the moderator is specified, then the diffusion
coefficient (D) remains effectively constant even if the quantity of the moderator or fuel is
changed.

e Geometric Buckling (Bg2) — the geometric buckling affects only the leakage of a system.
Changing the geometrical properties of a system increases or decreases the neutron
leakage.

Thus, a change in the neutron density of a system is equal to the difference of production and
losses (absorption and leakage) from the system.

Change in the Neutron Density = Production — Absorption — Leakage

or

Change in the Neutron Density = Function of (ABwn?, ABg?)

2.2.2 Correction for Thermal Systems in One-Group Diffusion Theory

For the discussion about modified one-group diffusion theory, it is beneficial to discuss the
difference between the effective multiplication factor (kes) and the infinite multiplication factor (k«).
The kefr is the multiplication factor of a finite system and considers neutron leakage, neutron
absorption, and neutron production. The k- is the infinite multiplication factor, which assumes no
neutron losses caused by leakage from the system because a neutron cannot leave a system that is
infinite in extent. Thus, the production term in the neutron diffusion equation, vy, can be written as
follows:

I)Zf = kaa .

This relationship can be derived from the four-factor formula as follows:



k, =nepf,

UZ?uel ZFuel vzfuel
_ 4 a —
nf '

- Fuel System - System ’
Z(l Za Za

The terms € and p are correction factors to account for:

& — the increase in the number of fissions in the system caused by fast fission occurring in a thermal
system, and

p — the decrease in the neutrons available in the system for thermal fissions caused by absorptions
in the resonance region while neutrons are slowing down.

Thus, € and p allow for a one-group equation to be generated with correction factors to consider
two-group effects. In reality, the production term in the one-group diffusion equation should be
written with these terms present; however, these terms are usually assumed to be about equal to 1.0
for a thermal system.

UpeLy=k.Z,.
Thus, the “corrected” diffusion equation can be written as follows for a finite system:

1d¢

=k X ¢-% ¢—(-DV’
s PR TSPV

This equation can be simpified as follows and is known as the modified steady-state diffusion
equation. Recall that the time rate of change of the neutron flux for a steady-state system is zero
(i.e., the neutron population in the system is constant). Therefore,

199 5 (k —19+DV%=0 or
v dt “anT

& +i(k -1)¢=0
0+~ (k. ~1)p=0.

In this equation, X% /D (cm=2) is equal to 1/L? where L is the neutron diffusion length. The
modified one-group diffusion theory equation can now be rewritten:

Substituting this into the modified one-group diffusion equation, for a steady-state system, yields

oo

Vi +

(k. -1) ) )
—¢=0 or V¢+B ¢=0,

(k-1

where Bi = iz

10



This equation can be rearranged as follows:

k

1+B’=k or 1l=—>2—,
" - 1+BiLz

Now, the general equation for a critical condition can be written as follows to determine the
nonleakage probability expressions for a critical system:

kP =1,
where P, is the nonleakage probability; therefore, if
hP =1=— =
ot 1+B I
then the nonleakage probability is

1
" 1+B'LD

For a critical system, recall that Bi = B:; therefore, the nonleakage probability can be written

1
L 14+ B2
g 8

2.2.3 Modified One-Group Diffusion Theory

Even corrected for fast fission and resonance absorption, one-group diffusion theory still does not
consider moderation for thermal systems. In particular, the process of moderation requires some
distance for the neutrons to travel while slowing down. In the process of moderation, some neutrons
may leak from the system. To account for these effects, one-group diffusion theory is modified by
considering the neutron slowing down distance and non-thermal leakage.

The parameter typically used to account for slowing down is T, known as the neutron age (cm2).

When incorporated in the non-thermal non-leakage probability, the neutron age accounts for both
the distance required to moderate the neutrons and the leakage of neutrons during moderation.

Using 7, the non-thermal or fast non-leakage probability, Pf, is defined as:

1
o 2
1+Bm1'

then the six-factor formula for a critical system in modified one-group diffusion theory is

k_ Pthszl or neprthszl.

where P, = 1 is the thermal non-leakage probability.
" 1+BL,

11



If the expressions for the nonleakage probabilities are written out, then the six-factor formula
becomes:

k , D,
= =1 where L, = —th

(1+B%)(1+B2L2 ) z,

g g th

th

Now if the fourth order term in Bg 1s ignored, then

k k

o

= =1 or —=——=1

2 2 2 2
(1+Bg(T+Lth)) (1+BgM )

where M? = 7+ I2, is the migration area.

This is the expression for a critical system in modified one-group diffusion theory.

2.3 Applicability of One-Group Diffusion Theory

The one-group diffusion theory method is applicable for fissile material systems with the following
characteristics and assumptions.

o All neutrons in the system must have the same energy or velocity (this approximation is
more valid for fast, but not thermal, systems).

e Itis assumed that neutrons that collide with nuclei in the system do not lose energy and
only their direction of movement changes.

o The medium in which the neutrons are diffusing is homogeneous.

e Neutron scattering is isotropic, meaning that neutrons that scatter will do so in all
directions.

o A “close-fitting” neutron reflector does not surround the fissile material.
e The medium in which the neutrons are diffusing is weakly absorbing.

e The neutron flux is a slowly varying function of position in the system, a characteristic
which is true at points in the system that are at least a few mean free paths from the
system boundaries.

2.4 Applicability of Modified One-Group Diffusion Theory

The modified one-group diffusion approximation has the same applicability and limitations as the
one-group diffusion approximation; however, this method can best be used for homogeneous systems
that contain moderating materials.

2.5 Example Problems

The example problems for one-group and modified one-group diffusion theories will illustrate how
they can be applied to simple systems to determine the characteristics for the system. Each method
will be compared with one another to show the usefulness and limitations of the methods for various
systems.

12



2.5.1 Diffusion Theory Example Problem 1

Assume a slab tank (Figure 2) contains a mixture of water and pure plutonium-239
(239Pu) with a 239Pu concentration of 100 grams per liter at 20 °C.

Using the data in Table 3, determine the following for this particular system to support the
design for a slab tank that will contain a pure 239Pu solution.

1. The infinite multiplication factor, k...
2. The critical slab thickness using one-group diffusion theory.

3. The critical slab thickness for this problem using modified one-group diffusion
theory.

Figure 2. Slab Tank Containing a 239Pu Metal-Water Mixture for Diffusion Theory
Example Problem 1

13



Table 3. Diffusion Theory Example Problem 1 Data

Constituent Parameter Data Value Reference
04(2200 m/s) 1011.3 barns 2, Table I1.2, pg. 643
07(2200 m/s) 742.5 barns 2, Table I1.2, pg. 643
1% 2.871 2, Table 3.4, pg. 70
239Pu Za (non-1/v factor)
for 20 °C 1.0723 2, Table 3.2, pg. 63
gf (non-1/v factor)
for 20 °C 1.0487 2, Table 3.2, pg. 63
Hydrogen
64 (2200 m/s) 0.332 Db 2, Table I1.2, pg. 643
Oxygen
G4 (2200 mls) 0.28 mb 2, Table I1.2, pg. 643
Water
= -3
64 (2200 m/s) 0.6643 b 2x0.332 b + 0.28x103 b
T 27 cm? 2, Table 5.3, pg. 215
Water D 0.16 cm 2, Table 5.2, pg. 210

Dmixture: Dwater

Tmixture= Twater

The slab tank will contain mostly
water with small quantities of
239Pu. Therefore, the diffusion
coefficient and neutron age will be
approximately that of water.

Part 1. Because 239Pu is a non-1/v absorber in a thermal system, the absorption microscopic
cross section must be adjusted using the ga and gr factors as listed in Table 3. The non-1/v
factors are used to adjust the microscopic absorption cross sections for various cross sections
that typically have high absorption cross sections. The absorption rate of thermal neutrons

with 239Pu varies as a function of the temperature of the system.

Thus, the absorption and fission microscopic cross sections in barns for 239Pu and water are

adjusted as follows.

For ***Pu,

ik

a

0

f

==, 8.0, (2200) = 0.886x1.0723x1011.3 = 961 b,

o =—n-g 0.(2200)=0.886x1.0487 x 742.5 = 690 b.
2 ff
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For Water (H,0), the cross-section adjustment for hydrogen is expressed as

_ \n

O athyay = 9

8,0, (2200) = 0.886x1.0x0.332 b = 0.294 b

and for oxygen it is expressed as

3

o = 8.0 (2200)=0.886x1.0x0.28:107 b=2.5x10" b.

a  a(oxy)
The total for water (H,O) is

o =2x0 +0 =2x0.294 b+ 2.5-10™ b= 0.588 b.

a(water) a(hyd) a(oxy)

To calculate the macroscopic cross sections, the next step is to calculate the atom densities
for 239Pu and water; knowing the density of 239Pu, p, Avogadro's number, N, and the atomic
weight of 239Pu. References 3 and 4 contain further information about calculating atom
densities for various materials and compositions.

_pglem’xN, atoms—cm®/mol—b

N

Pu APu239 g/ mol
A, e =239.10 g /'mol
3 _ 2 _
N, = (0.1 g/cm”)(0.6022 atoms —cm /mol b) = 959210 atoms/b-cm
“ 239.10 g/ mol

Now that the 239Pu atom density is known, calculate the volume fraction for 239Pu and water
to determine the atom density for water.

_ Concentration 0.1 g/cm’
“Pu Theoretical Density 19.75g/cm?

f, =0.005 or 0.5%

Uy = 1= 0f (*Pu)=1-0.005= 0.995 or 99.5%
g
=1.0
pHZO Cm3
2
N, =0.6022 atoms-cm”

mol-b

A, =2%1.0079 g/ mol+15.9994 g/ mol=18.015 —5—
mol

Ui X Pryr 8lcm’ X N, atoms - em?/mol-b

Water
! A, &lmol
3 2
_ 0.995%x1.0 g/em® x 0.6022 atoms-cm /mol-b — 53.396x10° atoms
Water 18.015 g / mol b-cm

15



The macroscopic absorption and fission cross-sections can now be determined for 239Pu.
References 1 and 2 provide good background information about calculating macroscopic cross
sections.

Zf” =N, X0, = 2.52x10™* atoms/b-cmx690 b = 0.1739 cm™

PR N, x& = 2.52x107" atoms/b-cmx961 b = 0.2422 cm™

a

v = N, = 3.326x107 atoms/b-cmx0.588 b = 0.0196 cm™*

water x O-a(water) -

L g — wPe g s 0,2422 cm™ + 0.0196 cm™ = 0.2618 em!

Next, 717, the number of neutrons released in fission per neutron absorbed by a fissile nucleus
and f, the thermal utilization factor, can be calculated.

CZMXV0.1739x2.871

n= =2.061,
zfj‘ 0.2422
e 0.2422

f=—2t—= =0.925

2;"""””6 0.2618

Because no fertile material is present (i.e., no 24°Pu or 238U), no corrections are needed for
resonance absorption or fast fission, so k., = 17f, which is equal to the following:

k_=nf= 2.061 x0.925=1.906.

This result for k., means that a criticality is possible for this 239Pu and water system at the
stated concentration.

With the information provided above, one could determine the concentration required to
result in a k_ that is less than 1.0, which would provide the “always safe” concentration for
an infinite 239Pu-water mixture. Setting up this methodology in a spreadsheet and using the
“goal seek” capability provides an answer of 7.66 g Pu per liter (or 0.00766 g Pu/cm3) for an
infinite critical system, k.= 1.

Part 2. The first step to calculate the critical slab thickness using one-group diffusion theory
1s to determine the diffusion length, L2, and use the result to determine the value for the
critical slab height.

D 0.16 cm
7 — 2
L= Z:ixture = 0.2618 Cm71 =0.611 cm ,

k-1 -
B = ML2 = 01‘691016 12 =1.483 cm™.
.611 cm

From Reference 2, Table 6.2, the buckling for an infinite slab with a thickness “a” 1s B2 =
(n/a)?, where @ includes the extrapolation distance. Now that the buckling for this problem is
known, the critical slab extrapolated thickness can be determined.

16



2 2
d:,/”— =,/”— —92.58 cm.
B’ 1.483 ¢cm™

This dimension must be corrected by subtracting the extrapolation distance, d. See Appendix
A for an overview on extrapolation distance. For this slab and various materials present, d =
2.13D.

Ql

a=G-2d= 5—2(2.13-D): 2.58 cm—2(2.13><0.16 cm)= 1.90 em .

Figure 3 shows that the critical slab thickness for this system, a Pu(0) metal-water mixture
and a concentration of 0.1 g/cm3 (100 gPu/l), is about 5.6 in. (14.2 cm). This result shows that
simple one-group diffusion theory does not accurately estimate the critical dimensions for the
239Pu-water slab tank. Perhaps modified one-group diffusion theory will provide more
effective results.

Part 3. For modified one-group diffusion theory, the thermal migration area, M2, needs to be
calculated by calculating the sum of L? (neutron diffusion area) and 7 (neutron age). Then the
critical slab height can be determined as follows:

k-1 k-1
Bt 19061 _ ) 03981 em™
L’+71 0611+27

=1/ 5 —1734cm
B 0003281 cm™

Based on Figure 9 data, the extrapolation distance for this type of system is about 2.15 cm.

a= 6—2(2.13D) =17.34 cm—2(2.15 cm) =13.04 cm.

Note that for thermal systems (particularly those containing water), the extrapolation
distance is usually around 2 cm. It is best to use figures such as Figure 9 to determine the
extrapolation distance for such systems.

Based on this result, a 239Pu-water mixture will result in a subcritical configuration if the
“infinite” slab tank thickness is less than about 17.34 cm. This result compares well with the
infinite slab thickness for a Pu(0) metal-water mixture shown in Figure 3. This data shows
that a Pu(0) metal-water mixture at a concentration of 0.1 g/cm3 (100 gPu/l) has a critical
thickness of about 5.6 in. (14.2 cm), which is consistent with the answer.

Modified one-group diffusion theory can be used effectively for moderated, thermal problems.
Based on the results presented in this example problem, it is recommended that
only modified one-group diffusion theory be used for problems similar to this
example, as one-group diffusion theory does not consider the effects of
moderation.
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(Reference 5, Figure II1.A.5-2)
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2.5.2

Diffusion Theory Example Problem 2

It is proposed to store water solutions of uranyl sulfate (UO2S04) with a

concentration of 30 g 235U/1 (0.03 g/cm3) of the sulfate. Assume the temperature of
the solution is 20°C, and the uranium is fully enriched (i.e., no 238U is present).

Table 4 lists the relevant data for this problem.

1.
2.

Is this configuration safe when using a tank of unspecified size and shape?

If not, calculate the critical cylindrical tank radius using modified one-group diffusion

theory.
Repeat (2) as if the enrichment were 14.7 weight percent 235U instead of fully enriched
235(J.
Table 4. Diffusion Theory Example Problem 2 Data
Constituent Parameter Data Value Reference
04(2200 m/s) 680.8 barns 2, Table I1.2, pg. 643
07(2200 m/s) 582.2 barns 2, Table I1.2, pg. 643
1% 2.418 2, Table 3.4, pg. 70
25U Zga (non-1/v
factor) for 20°C 0.9780 2, Table 3.2, pg. 63
gf (non-1/v
factor) for 20°C 0.9759 2, Table 3.2, pg. 63
0in UO2S0s | 0u(2200 m/s) 0.28 mb 6
Sin UO2S0s | 0u(2200 m/s) 0.52b 6
Hydrogen
0. (2200mis) | 332D 6
Oxygen
Ga (2200 m/s) 0.28 mb 6
Water
= -3
64 (2200 m/s) 0.6643 b 2x0.332 b+ 0.28x103 b
T 27 cm? 2, Table 5.3, pg. 215
Water D 0.16 cm 2, Table 5.2, pg. 210

Dmixture = Dwater

Tmixture = Twater

The tank will contain
mostly water with small
quantities of 235U,
Therefore, the diffusion
coefficient and neutron
age will be approximately
that of water.
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Part 1. Because the tank dimensions are not specified in the problem, one must assume that
it is effectively infinite in size. Hence, we must calculate the infinite multiplication factor, k...
If the k_ has a value less than 1.0, the system will remain subcritical at the assumed
concentration.

As stated in Section 2.5.1, because 235U 1s a non-1/v absorber, the absorption microscopic
cross section must also be adjusted using the g« and grfactors as listed in Table 4. Thus, the
absorption and fission microscopic cross sections in barns for 235U are adjusted as follows.

Jr

5,==,8.0, (2200) = 0.886x 0.978 x 680.8=590 b

)

G,=",80 (2200) = 0.886 % 0.9759 x 582.2 = 503 b.

For sulfur,

G = ggaca (2200)=0.886x1.0x0.52=0.461 b,

a

For Water (H,0), the cross-section adjustment is expressed as

5 Jn c (2200) =0.886x1.0%0.6643 b= 0.588 b

a(HzO): 2 ga a(HZO)

and for oxygen in uranyl sufate, it is expressed as

_ =

B oo =g 8O (2200)=0.886x1.0x0.28:107 b=2.5x10" b.

a  a(oxy)

The next step is to calculate the atom densities for 235U and water, to calculate the
macroscopic cross sections. Note that the uranium in the solution is fully enriched (100%
235U) and does not contain any 238U,

N = (Cyyys 81 cm” )N, atoms —cm? [mol — b)
ZSSU (A

U

_y5s 8/ mol)

3 2
_(0.03 g/ cm?”)(0.6022 atoms —cm /mol— b) _769%10° atoms /b cm

U (235.04 g / mol)
No., = Ny 0, = 7-69% 10 atoms/b-cm
N, =6xN,, =N, =6x(7.69% 107° atoms/b—cm)=4.614x10™" atoms/b—cm
Ny =N, =7.69x10" atoms/b—cm

Now that the 235U atom density is known, calculate the volume fractions for 235U and water
to determine the atom density for water:
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. 3
Concentration  0.03 g/cm —0.0016 or 0.16%

Ufzsa = . . -
U Theoretical Density 18.9 g/cm’

Vf o =1 = 0f(**U)=1-0.0016 = 0.9984 or 99.84%

N Uf 0o X Py glem® XN atoms-cm?/mol—b
H20
A, g/mol
N 0:9984x1.0 glem”® x 0.6022 atoms-cm?/mol—b
"20 18.015 g/mol
_, atoms
Ny =333TX10% 222

Jr

$#20 XN, xo, =3.337x107 atoms ) 5881 = 0.0196 cm™.
a 2 20 b-cm

The macroscopic absorption and fission cross-sections can now be determined for 235U.

V=N, x G, = 7.69x10” atoms/b-cm x590 b = 0.04537 cm ™

a 238 U

V=N, x&, = 7.69x10" atoms/b-cmx503b = 0.03868 cm ™

f - 28577

zfz‘) =0.0196 cm™

IO 2 N x o = 7.69x107 atoms/b-cm x0.461 b = 3.545x10° cm™!

a

0PV 2 N x o = 4.612x10™ atoms/b-cm x 2.48x10* b = 1.1x107 em™

i o 37U 4 pH20 43S 4 30
Tt 2 0,04537 cm™ + 0.0196 cm ™ +3.545x10° ecm ™ +1.14x107 cm ™

T = 0.06501 cm ™.

Next, 717, the number of neutrons released in fission per neutron absorbed by a fissile nucleus
and f, the thermal utilization factor, can be calculated:

235

> Uxy
po T XV 0038682418 _, oo

zrﬁU 0.04537

2235U
oo o Q0453T_ 6979
e 0,06501

Because no 238U is present, the fast fission factor, ¢, is equal to 1. In addition, it can be
assumed that the resonance escape probability is equal to 1 because the only resonance
material is 235U and neutron absorption and fission in the resonance region essentially cancel
each other out. Thus, the infinite multiplication factor is then k. = nf.
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k_=nf= 2.061 x0.6979=1.438.

Based on the result of this calculation, a tank with infinite dimensions at this concentration
of uranyl sulfate solution would not be safe. Again, a concentration search can be done in a
spreadsheet program to search on the concentration required to result in k.= 1.

Part 2. As this is a thermal system, a one-group analysis is not appropriate so a modified
one-group analysis is done. For modified one-group diffusion theory, the following results can
be obtained. For this part the thermal migration area, M2, needs to be calculated as the sum
of L2 (neutron diffusion length) and 7 (neutron age). Then the critical infinite cylinder radius
can be determined as follows.

L2 _2 _ 0.16 cm
X 0.06501 cm™t

_ 2
= =2.461 cm
a

k-1 k -1 1438-1

B = = =0.01487 cm™
m M? I2+7 2.461+27
_ 2 2
B [2:405 :\/ 2.405 197 em
B> 0.01487 cm™2

R=R-d=197cm—-22cm=17.5cm

An MCNP! calculation was performed to determine the radius for a critical, infinite cylinder
of this material, which resulted in a cylinder radius of approximately 17.25 cm. Modified one-
group diffusion theory provides a reasonable estimate of the critical dimensions for this
moderated, thermal system. As demonstrated in the last example problem, one-group
diffusion theory significantly underestimates the critical dimensions of moderated systems
and should only be used for fast, unmoderated systems.

Part 3. Significantly reducing the enrichment from fully enriched 235U (i.e., 100% 235U) to
14.7 weight percent 235U involves a corresponding increase in the quantity of 238U in the
system. The increased quantity of 238U in the system (100 — 14.7 = 85.3 weight percent) will
reduce the reactivity of the system compared with Part 2, because there is significant
resonance absorption occurring in the 238U. Thus, fewer fissile atoms are present and the
quantity of neutron absorbing nuclides in the system is larger.

First, the atom densities need to be modified to reflect the presence of 238U. The Table 5
provides the data required for this part of the problem.

L A General Monte Carlo N-Particle (MCNP) transport code.
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Table 5. Diffusion Theory Example Problem 2 Data for Part 3

Constituent Parameter Data Reference
Value
04(2200 m/s) 2.7b 2, Table I1.2, pg. 643
6, 2200 m/s elastic scattering
23577 05(2200 m/s) 9.38b cross section from ENDF/B-
VI data
fgr(ggri'é/ vfactor) | 517 2, Table 3.2, pg. 63
04(2200 m/s) 680.8 b 2, Table 3.2, pg. 63
07(2200 m/s) 582.2 b 2, Table 3.2, pg. 63
6, 2200 m/s elastic scattering
05(2200 m/s) 15.48 b cross section from ENDF/B-
23517 VI data.
1% 2.418 2, Table 3.4, pg. 70
ga (non-1/v factor) | g7q, 9, Table 3.2, pg. 63
for 20 °C ’ ’ e
& f;%n;é/ viactor) 1 9759 2, Table 3.2, pg. 63
6, 2200 m/s elastic scattering
0 in U04SOs 04(2200 m/s) 0.28 mb :;‘Io(siif;ctlon from ENDF/B-
05(2200 m/s) 3.76 b 2, Table I1.3 pg. 645
6, 2200 m/s elastic scattering
S in U0.S0. 04(2200 m/s) 0.52Db :;'Io(sis section from ENDF/B-
ata.
05(2200 m/s) 0.975b 2, Table I1.3 pg. 646
6, 2200 m/s elastic scattering
Zzyér;(?g?n/s) 0.332 Db cross section from ENDF/B-
VI data.
Oxygen 6, 2200 m/s elastic scattering
0.28 mb cross section from ENDF/B-
Water Oa (2200 m/s) VI data.
Za(t;;oo i) 0.6643b | =2 x0.332b+0.28x 10%b
Water 103.0 2, Table I1.3 pg. 647
05 (2200 m/s) ) ’ ) )

Now, as in the last part of this problem, the atom densities need to be calculated to consider
the effects of the 238U in the system. First, the absorption cross section must be adjusted as
before for 235U because 238U is a non-1/v absorber:

. Jr

a(U-238) 9

2,0,(2200) = 0.886x1.0017x 2.7=2.40 b

The atom density for 235U remain unchanged as the concentration of 235U remains the same.
The concentration of 238U is based on the atom density of uranium.
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N, = 7.69%x107° atoms/b-cm

The concentration term, above, can be adjusted by dividing through by the
enrichment, which is equal to 14.7 wt. % U in U:

C 3
_ v 00381emT 6 904 o 1) em?

U 0,147 0.147

-1 1
Ao Wh wh| _[0.147 | 853 | oo eh o a4ty mole
A A 235.04  238.05

_ (C, glem®)(N, atoms—cm2/mol— b)

N
v (A, g/ mol)
3 2
N, = (0.204 g/ cm”)(0.6022 atoms —cm /mol—b) 517010~ atoms/b— em
v (237.60 g/ mol)

N,,=N,-N,, =5170x10" atoms/b—cm — 7.69x107" atoms/b—cm

ZSBU

N, =4.401x10" atoms/b—cm

ZSSU

N,=6xN, =N, =6x(5.170x10™ atoms/b—cm)=3.102x10™ atoms/b—cm

v0,80,
N =N, =5.170x10"" atoms/b—cm.

The atom densities have changed significantly compared with Part 2 of the problem because
of the addition of 238U to the system. Thus, because the macroscopic cross sections are

dependent on the atom densities, they need to be recalculated. Recall that the concentration
needed for the following calculations must allow for the total uranium content in the system,
not only the 235U content. The macroscopic absorption cross-section for water is calculated as

follows.

Concentration  (0.204) g/cm’

of, = : , —0.0108 or 1.08%
Theoretical Density  18.9 g/cm®

of .0 =1-0f(U)=1-0.0108= 0.9892 or 98.92%
N Vo X P, glem’ xN atoms-cm®/mol-b
H20
A, 81 mol
n _0:9892x1.0 g/cm’ x0.6022 atoms-cm®*/mol-b
120 18.0152 g/ mol

_ _» atoms
NHZO =3.3066x10 m
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L =N, xo, =33066x10" @x 0.588 b=0.01944 cm™*
H20 H20 -cm

£V =N, x5, = 769x10° 22 503 = 0.03868 cm”
-cm
E =N, x5, = 1.69x10° 25500 b = 0,04537 cm™
-cm
2381y — ]\7238 X0 = 4.401 X1074 Mx 240 b = 0.001056 Cm_l
a U a b-cm
atoms

PO = N x o = 5.170x10™ x0.461 b = 2.383x107* em™

a

-cm

TRV LN o = 3.102x107 L5090 485107 b = 7.7x107 em™
-cm

UOLSO 235 238
D MACHCIED M M Yol o )
a a a a

a

209 =0.04537 em™ + 0.001056 cm™ + 2.383x107 em™ +7.7x107 em™ = 0.04666cm ™

. Z;nixture — Z

V0,80, | 5 H20
a a

T = 0.04666 cm” +0.01944 cm™ =0.06610 cm " .

Next, 717, the number of neutrons released in fission per neutron absorbed by a fissile nucleus
and f, the thermal utilization factor, can be calculated for this system. The macroscopic
fission cross-section for 238U is very small and can be neglected in this calculation:

. X U 4vxE Y 2.418x0.08868+0 _, o
FU0S% 0.04666 '

_E%%%0.04666

—_— =0.706.
T T 0.06611

f

Because this system with lower enrichment contains significant quantities of 238U, the
resonance escape probability needs to be calculated. The resonance escape probability is the
probability that a neutron will escape being captured by the material resonances as it slows
down from fast to thermal energies. In this case, the resonances in the absorption cross-
section for 238U will make fewer neutrons available for subsequent fissions and reduce the
system reactivity.
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First, calculate the mean lethargy gain per neutron collision, &, for the moderator and fuel
mixture present in this system. From Reference 1, pg. 324, £ is defined as follows:

§:1-(A'1)21n A+1
24 A-1

For an atomic weight, A, greater than 10 (A>10) the following approximation can be used:

ézi for A >10.

A+g
3

We need to calculate & for the mixture of moderator and fuel.

For hydrogen (A = 1): =1-
ydrogen ( ): Sy oA

_ 2
(A-1) ln{AJrl}:l—O:l (Reference 2, Table 8-1).

For oxygen (A=16): § = 2z 0.12.

16+—
3

For sulfur (A=32): & = LZ =0.061.

32+ =
3

2__ 0.0085.

For **U (A=235): £

U235

235+ —
3

2z =0.0084.

238 +—
3

For **U (A=238): &

U238

+N

Syos 5U235 230

_ NOO-sogO + NHo-sHéH + NSO-ssés + NUZSSO- Uags U238

mixture
NO o-so + NHO-SH + NS o-ss + ]\]U235O-SU235 + ]VU2380-3U238

-2 -2 -4 -5 —4
— (3.3066x10  x3.76x0.12)+(2x3.3066x10  x38.0x1)+(5.17x10  x0.975x0.061)+(7.69x10 ~ x15.48x0.0085)+(4.401x10 ~ x9.38x0.0084)

J

mixture

-2 -2 -4 -5 —4
(3.3066x10  x3.76)+(2x3.3066x10 ~ x38.0)+(5.17x10  x0.975)+(7.696x10 ~ x15.48)+(4.401x10  x9.38)

E 2:528 _ ) 956

gmixture = 2643

Note that 2:‘"‘1”'“‘” =(3.3066x107* x 3.76) + (2x 3.3066 x 10 x 38.0) = 2.637 cm ™"
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Now the resonance escape probability can be calculated using the following relationship:

—0.472

3.06 | Zmederer 306( 2637 )
P=exp| ———| =—— =exp| —— . =0.968.
N 0.956\ 4.401x10™

'mixture Uysq

The fast fission factor, €, is assumed to be equal to 1.0 for this case to emphasize the
importance of the resonance escape probability to this kind of system. Thus, the infinite
multiplication factor is then k. = nefp.

k_=nfep= 2.004 x0.706x1.0x0.968